4. Median of Two Sorted Arrays
Problem:
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5Solution:
O(log (m+n)) means half of the sequence is ruled out on each loop. So obviously we need binary search.
To do it on two sorted arrays, we need a formula to guide division.
Let nums3 be the sorted array combining all the items in nums1 and nums2.
If nums2[j-1] <= nums1[i] <= nums2[j], then we know nums1[i] is at num3[i+j]. Same goes nums1[i-1] <= nums2[j] <= nums1[i].
Let k be ⌊(m+n-1)/2⌋. We need to find nums3[k] (and also nums3[k+1] if m+n is even).
Let i + j = k, if we find nums2[j-1] <= nums1[i] <= nums2[j] or nums1[i-1] <= nums2[j] <= nums1[i], then we got k.
Otherwise, if nums1[i] <= nums2[j] then we know nums1[i] < nums2[j-1] (because we did not find k).
- There are
iitems beforenums1[i], andj-1items brefornums2[j-1], which meansnums1[0...i]are beforenums3[i+j-1]. So we now knownums1[0...i] < nums3[k]. They can be safely discarded. - We Also have
nums1[i] < nums2[j], which meansnums2[j...n)are afternums3[i+j]. Sonums2[j...n) > nums3[k].
Same goes nums1[i-1] <= nums2[j] <= nums1[i].
///**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/let findMedianSortedArrays = function (nums1, nums2) {const mid = ((nums1.length + nums2.length - 1) / 2) | 0;if ((nums1.length + nums2.length) % 2 === 0) {return (_find(nums1, nums2, mid) + _find(nums1, nums2, mid + 1)) / 2;}return _find(nums1, nums2, mid);};function _find(nums1, nums2, k) {if (nums1.length > nums2.length) {// So that the `i` below is always smalller than k,// which makes `j` always non-negative[nums1, nums2] = [nums2, nums1];}let s1 = 0;let s2 = 0;let e1 = nums1.length;let e2 = nums2.length;while (s1 < e1 || s2 < e2) {const i = s1 + (((e1 - s1) / 2) | 0);const j = k - i;const ni = i >= e1 ? Infinity : nums1[i];const nj = j >= e2 ? Infinity : nums2[j];const ni_1 = i <= 0 ? -Infinity : nums1[i - 1];const nj_1 = j <= 0 ? -Infinity : nums2[j - 1];if (nj_1 <= ni && ni <= nj) {return ni;}if (ni_1 <= nj && nj <= ni) {return nj;}if (ni <= nj) {
s1 = i + 1;
e2 = j;} else {
s2 = j + 1;
e1 = i;}}}☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆
